Fast Evaluation of Feynman Diagrams

نویسندگان

  • Richard Easther
  • Gerald Guralnik
  • Stephen Hahn
چکیده

We develop a new representation for the integrals associated with Feynman diagrams. This leads directly to a novel method for the numerical evaluation of these integrals, which avoids the use of Monte Carlo techniques. Our approach is based on based on the theory of generalized sinc (sin(x)/x) functions, from which we derive an approximation to the propagator that is expressed as an infinite sum. When the propagators in the Feynman integrals are replaced with the approximate form all integrals over internal momenta and vertices are converted into Gaussians, which can be evaluated analytically. Performing the Gaussians yields a multi-dimensional infinite sum which approximates the corresponding Feynman integral. The difference between the exact result and this approximation is set by an adjustable parameter, and can be made arbitrarily small. We discuss the extraction of regularization independent quantities and demonstrate, both in theory and practice, that these sums can be evaluated quickly, even for third or fourth order diagrams. Lastly, we survey strategies for numerically evaluating the multi-dimensional sums. We illustrate the method with specific examples, including the the second order sunset diagram from quartic scalar field theory, and several higher-order diagrams. In this initial paper we focus upon scalar field theories in Euclidean spacetime, but expect that this approach can be generalized to fields with spin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator approach to analytical evaluation of Feynman diagrams

The operator approach to analytical evaluation of multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of massless Feynman integrals, such as the integration by parts method and the method of ”uniqueness” (which is based on the star-triangle relation), can be drastically simplified by using this operator approach. To demonstrate the advantages of the ...

متن کامل

Multi-loop Feynman Integrals and Conformal Quantum Mechanics

New algebraic approach to analytical calculations of D-dimensional integrals for multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of multi-loop Feynman integrals, such as integration by parts and star-triangle relation methods, can be drastically simplified by using this algebraic approach. To demonstrate the advantages of the algebraic method of ...

متن کامل

0 A Feynman Diagram Analyser DIANA – Graphic Facilities

New developments concerning the extension of the recently introduced (1) Feynman diagram analyser DIANA are presented. Recent high precision experiments require, on the side of the theory, high-precision calculations resulting in the evaluation of higher loop diagrams in the Standard Model. For specific processes thousands of multiloop Feynman diagrams do contribute. Of course, the contribution...

متن کامل

ar X iv : h ep - p h / 06 02 10 7 v 1 1 3 Fe b 20 06 Automated Calculation Scheme for α n Contributions of QED to Lepton g −

This article reports an automated approach to the evaluation of higher-order terms of QED perturbation to anomalous magnetic moments of charged leptons by numerical means. We apply this approach to tenth-order correction due to a particular subcollection of Feynman diagrams, which have no virtual lepton loops. This set of diagrams is distinctive in that it grows factorially in number as the ord...

متن کامل

An Algorithm for Small Momentum Expansion of Feynman Diagrams

An algorithm for obtaining the Taylor coefficients of an expansion of Feynman diagrams is proposed. It is based on recurrence relations which can be applied to the propagator as well as to the vertex diagrams. As an application, several coefficients of the Taylor series expansion for the two-loop non-planar vertex and two-loop propagator diagrams are calculated. The results of the numerical eva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999